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Abstract 

The objective of this study is to assess the impacts of Land Use Land Cover change on the 

hydrological responses of the Mahanadi river basin, a large river basin in India. Commonly, 

such assessments are accomplished by using distributed hydrological models in conjunction 10 

with different land use scenarios. However, these models through their complex interactions 

among the model parameters to generate hydrological processes, can introduce significant 

uncertainties to the hydrological projections. Therefore, we seek to further understand the 

uncertainties associated with model parameterization in those simulated hydrological 

responses due to different land cover scenarios. We performed a sensitivity-guided model 15 

calibration of a physically semi-distributed model, the Variable Infiltration Capacity (VIC) 

within a Monte Carlo Framework to generate behavioural models for subcatchments of the 

Mahanadi river basin. These behavioural models are then used in conjunction with historical 

and future land cover scenarios from the recently released, Land use Harmonisation (LUH2) 

to generate hydrological predictions and related uncertainties from behavioural model 20 

parameterisation. The LUH2 dataset indicates a noticeable increase in the cropland (23.3% 

cover) at the expense of forest (22.65% cover) by the end of year 2100 compared to the 

baseline year, 2005. As a response, simulation results indicate a median percent increase in 

the extreme flows (defined as the 95th percentile or higher river flow magnitude) and mean 

annual flows in the range of 1.8 to 11.3% across the subcatchments. The direct conversion of 25 

forested areas to agriculture (on the order of 30,000 km2) reduces the Leaf Area Index and 

which subsequently reduces the Evapotranspiration (ET) and increases surface runoff. 

Further, the range of behavioural hydrological predictions indicated variation in the 

magnitudes of extreme flows simulated for the different land cover scenarios, for instance 

uncertainty in far future scenario ranges from 17 to 210 cumecs across subcatchments. This 30 

study indicates that the recurrent flood events occurring in the Mahanadi river basin might 

be influenced by the changes in LULC at the catchment scale and suggests that model 
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parameterisation represents an uncertainty, which should be accounted for in the land-use 

change impact assessment. 

Keywords: Land cover change, Variable Infiltration Capacity (VIC), LUH2, Sensitivity Analysis, 35 

calibration, hydrological components 

1. Context and Background 

Land use and land cover change (LULC) induced by the rapid anthropogenic activities, is one 

of the major causes of change in hydrological and watershed processes (Rogger et al., 2016). 

Alterations of existing land cover types and land management practices in a catchment can 40 

thereby, significantly modify the rainfall path into runoff by changing the hydrological 

dynamics such as surface runoff, baseflow, Evapotranspiration (ET), water holding capacity of 

the soil, interception and groundwater recharge, thus reflecting a change in the water 

demand (Berihun et al., 2019; Bosch and Hewlett, 1982; Costa et al., 2003; Foley et al., 2005; 

Garg et al., 2017; Hamman et al., 2018; Mao and Cherkauer, 2009; Rogger et al., 2016; Zhang 45 

et al., 2014). For instance, developing countries like India are facing rapid growth in 

population which has prominent effects on LULC dynamics through deforestation, rapid 

urbanization, and agricultural intensification, subsequently modifying the hydrological cycle 

in many river basins of India. A recent analysis on global land cover change have shown a 

significant increase of 82% in the croplands in India (Chen et al., 2019a; IPCC, 2019). 50 

Therefore, a comprehensive understanding and evaluation of land cover change impacts on 

hydrological processes are essential for decision makers to plan environmental policies which 

focuses on water resource allocations, riparian ecosystem protection and river restoration 

(Chen et al., 2019b; Chu et al., 2013). 

Many studies have attempted to evaluate the hydrological responses to different LULC 55 

patterns on specific geographic locations (Abe et al., 2018; Chu et al., 2013; Eum et al., 2016; 

Li et al., 2015; Ma et al., 2010; Rodriguez and Tomasella, 2016; Viola et al., 2014; Woldesenbet 

et al., 2017) including Indian river basins (Babar and Ramesh, 2015; Dadhwal et al., 2010; Das 

et al., 2018; Gebremicael et al., 2019; Wilk and Hughes, 2002). Most of these studies used 

physically distributed hydrological models (e.g., SWAT, VIC, MIKE-SHE) to simulate the 60 

complex hydrological processes and to examine the impact of LULC changes on those 

processes. Conventionally, this is done by calibrating and validating the hydrological model 

against the observed data and then setting up that single calibrated model for a baseline land 
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cover scenario. The calibrated model is then run for different land use scenarios and 

subsequently the differences in simulations are compared. However, it is widely recognised 65 

that hydrological predictions obtained from single calibrated model can be biased and 

therefore the measure of their reliability is always questionable (Beven and Binley, 1992; 

Huang and Liang, 2006). There may exist ‘equally probable parameter set’ or ‘behavioural set’ 

that can yield equally good or acceptable model predictions, due to the complex interactions 

among the model parameters to represent the complex hydrological processes. This is known 70 

as equifinality and is considered as one of the main sources of uncertainty in hydrological 

modelling (Her et al., 2019). Recent climate change studies have acknowledged the 

uncertainties stemming from model parameters, and therefore they take into account these 

uncertainties while predicting the hydrological responses due to climate change (Chaney et 

al., 2015; Feng and Beighley, 2020; Her et al., 2019; Huang and Liang, 2006; Joseph et al., 75 

2018; Mockler et al., 2016; Singh et al., 2014). However, little is known about the 

contributions of model parameter uncertainties to the land use change impacts and thus, very 

few studies exist (Breuer et al., 2006; Chen et al., 2019b) which reported that uncertainties 

associated with the model parameters could significantly influence land cover change impacts 

and hence should not be overlooked while modelling hydrologic responses to LULC change. 80 

This paper specifically focusses on the Mahanadi River basin, an easterly flowing river basin 

in India. Eastern part of India is amongst the most rapidly changing landscape over the 

country, specifically, Mahanadi river basin has undergone drastic land cover changes in the 

last decades (Behera et al., 2018; Dadhwal et al., 2010). In this study, we address the science 

questions: 85 

1. What are the expected impacts of LULC changes on the water balance of the Mahanadi 

River basin?  

2. How these predicted impacts vary as a result of model parameter uncertainties?  

The major objectives of this study are: 

1. To predict the changes in hydrological processes owing to historical and future 90 

changes in LULC 

2. To understand the contribution of uncertainty from hydrologic parameterization to 

the hydrologic projections due to LULC change. 
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To this end, a large scale physically semi-distributed hydrological model, the Variable 95 

Infiltration Capacity (VIC) (Liang et al., 1994) and historical and future land cover scenarios 

from the Land Use Harmonisation 2 (LUH2) database (Hurtt et al., 2011) are used to simulate 

the discharge and other hydrological components at daily time scales in the Mahanadi river 

basin. The ability of VIC to simulate the impacts of LULC changes on hydrology are well 

documented in various research articles (Garg et al., 2017, 2019; Hurkmans et al., 2009; Mao 100 

and Cherkauer, 2009; Patidar and Behera, 2019; Zhang et al., 2014).  

We first perform sensitivity analysis of the model parameters and calibrate the hydrological 

model using Monte Carlo simulations to identify behavioural model simulations that implicitly 

account for the uncertainties from model parameterisation. Behavioural models are then 

used to predict the hydrological impacts due to different LULC scenarios. The land cover 105 

scenarios used in this study are most up-to-date scenarios which represents future changes 

in the LULC based on Shared Socioeconomic Pathways (SSPs). Previous studies (Breuer et al., 

2006; Chen et al., 2019b) have focussed only on the historical land use scenarios to evaluate 

the hydrological impacts, however and to our knowledge , this is the first study that uses 

applications of the VIC model in conjunction with future land cover datasets produced under 110 

combined SSP and RCP scenarios. While most past studies in other catchments used 

aggregated (monthly) time steps to model the change, we use daily time steps to capture the 

dynamics of daily flow variability. Moreover, analysis in most land use impact studies is limited 

just with the streamflow, missing an overall picture of the hydrological processes.  

 115 

2. Research Area 

Geographical Overview 
 
The Mahanadi River basin is located in the eastern part of India (Figure 1) and drains an area 

of 141,589 km2, which nearly accounts for 4.3% of the total geographical area of India. The 120 

basin has a varying topography with its lowest elevated area (-17 m) lying in the coastal 

reaches and the highest elevated area (1323 m) in the northern hills. The basin is 

characterized by tropical climate zone and receives rainfall from southwest monsoons which 

commences in June and lasts till October. The average annual rainfall is 1200 mm, with 90% 

of the total annual rainfall occurring during the monsoon months (Jin et al., 2018). The mean 125 

annual discharge is 1895 m3/s. The basin is also subjected to spatial variability in terms of 
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receiving rainfall which has resulted in floods in some parts of the basin and drought in others. 

Notice that about 65% of the basin is placed upstream of the Hirakud dam. The Hirakud dam 

with a gross storage capacity of 8.136 km3 is the major hydro project in the river basin 

constructed in the year 1957 to alleviate the flood problems and to serve multiple other 130 

purposes such as irrigation, hydropower generation and supplying drinking water. Despite its 

significant storage capacity, the large flows from upstream of dam and middle reaches of the 

catchment causes devastating floods during the monsoon in the deltaic region of the basin.  

About 48% of the total area is under agriculture (Figure 2a), out of which 30% is cropped 

during the kharif season or monsoon (June-Oct) and 15% is under double or triple irrigation. 135 

The remaining 3% of the area is cropped during Rabi and zaid season (winter and summer 

respectively). Deciduous Broadleaved Forest (DBF) being dominant among other forest types, 

covers 25% of the basin area (Figure 2a). Built up, plantation, grassland, shrubland, water 

bodies and other forest types constitute the rest 22 % of the basin area. Comparison of the 

local historical LULC maps of 2005 and 2014, obtained from the National Remote Sensing 140 

Centre (NRSC), shows an increase in the agricultural land from about 43 to 48% at the expense 

of fallow land, built up areas and water bodies while changes in forest covers were 

insignificant. In addition, loamy and clayey are the major soil types covering roughly 53% and 

42% respectively of the total basin area (NBBSS-LUP, India). Approximately 90% of the basin 

has moderately shallow to deep soil having depths greater than 50 cm. 145 

 

3. Materials and Methods 
 
3.1 Variable Infiltration Capacity (VIC) model  
 150 

The VIC model is a semi-distributed, land surface hydrologic model which solves both water 

and energy balance within the grid cells (Cherkauer and Lettenmaier, 1999). VIC maintains 

sub-grid heterogeneity in land cover classes i.e. divides each grid into tiles based on number 

of land cover classes, and also considers sub-grid variability in the soil moisture storage 

capacity (Liang et al., 1994). Surface runoff in VIC is generated through an infiltration excess 155 

by using the Xiangjiang formulation (Zhao et al., 1980) in the upper two soil layers. Baseflow 

is generated from the third soil layer by applying the Arno formulation (Franchini and Pacciani, 

1991). Actual Evapotranspiration of each grid cell in VIC is obtained by summing up three 

types of evaporation: Evaporation from bare soil, evaporation from canopy layer for each 
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vegetation type, transpiration from different vegetation types; and then weighted by the 160 

fractional area of each vegetation class. VIC computes Potential Evapotranspiration using the 

Penman-Monteith equation. The amount of rainfall intercepted by the canopy is calculated 

as a function of Leaf Area Index (LAI). 

To obtain the discharge at the basin outlet, the VIC model is coupled to a stand-alone routing 

model (Lohmann et al., 1996). This routing model follows a simple river routing scheme where 165 

runoff and baseflow are first routed to the edge of the grid cells using an instantaneous unit 

hydrograph and finally transported to the river/channel network using a linearized St. 

Venant’s equation. More details about the structure and formulations of the model can be 

found in the literature (Gao et al., 2010; Liang et al., 1994). 

In this study, we implement VIC model, version 4.2.d in the water balance mode at a daily 170 

time step and at a grid resolution of 0.05◦ over the 5 subcatchments of the Mahanadi River 

basin. Flows are routed to the subcatchments of Basantpur (Ba), Kantamal (Ka), Kesinga (Ke), 

Sundergarh (Su) and Salebhata (Sa) (Figure 1). We abstained from routing the flow for the 

entire Mahanadi River basin due to the presence of a major water management structure, 

Hirakud dam at the middle reach of the basin.  175 

 

3.2  Datasets  

The key input data required by the VIC model are meteorological forcings (precipitation, 

maximum temperature, minimum temperature and wind speed), soil type, land cover 

information and topographic features. Topographical features are determined using the 30-180 

meter CARTO-DEM (Cartosat-1 Digital Elevation Model), a national DEM developed by ISRO 

(Indian Space Research Organization) (Sivasena Reddy and Janga Reddy, 2015). The Mahanadi 

River basin is delineated and is converted into grid format of resolution 0.05◦ constituting of 

4807 grids within the basin area. Daily gridded precipitation (resolution, 0.25◦) and maximum 

and minimum temperature (resolution, 1◦) for the time period (1988-2010) are obtained from 185 

India Meteorological Department (IMD) (Pai et al., 2014). Soil textures are derived from the 

digitized soil map as provided by National Bureau of Soil Survey and Land Use Planning 

(NBSSLUP) (Scale 1:250000). Land cover maps from two different sources i.e., local and global, 

are used in this study. The local LULC map is derived from National Remote Sensing Centre 

(NRSC), India of year 2005 (scale 1:250000; resolution 56 meters) and is used in the model 190 

runs while performing sensitivity analysis, model calibration and validation. Global land cover 
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scenarios are obtained from LUH2 which are used in model simulations for predicting impacts 

of land cover changes on hydrological components. All LULC maps used in this study are 

reformatted and reclassified into USGC LULC types as required by the VIC model (Figure 2a). 

The observed discharge at daily scales at multiple gauges (Fig 1) for the simulated time (1988-195 

2010) are obtained from the Central Water Commission (CWC), India, for validating the 

simulated discharge. 

3.3 Model parameters 

We have selected 16 VIC model parameters (Table 1) for the Sensitivity Analysis (SA). The 

choice of parameters was based on our preliminary experiments and expected sensitive 200 

properties from previous studies (See description below Table 1). Typical calibration in VIC 

involves only streamflow related parameters as also recommended by VIC model developers 

(Gao et al., 2010; Gou et al., 2020; Xie et al., 2007). However a few studies have reported that 

some vegetation parameters are sensitive to the runoff in the VIC model (Demaria et al., 2007; 

Joseph et al., 2018). Parameters subjected to SA in this study include, among others, rarely 205 

implemented soil properties: Bulk Density (BD), Fractional water content at wilting point 

(Wpf) and at critical point (Wcrf); vegetation properties: architectural resistance (rarc) Stomatal 

Resistance (rmin); and routing parameters: velocity (v) and diffusion (diff). A multiplier of Wcrf 

is used to compute wpf, to meet the criteria that soil moisture at wilting point should always 

be less than soil moisture at critical point and the multiplier is tested for sensitivity rather 210 

than the actual parameter. Similar approach is followed by Rosolem et al., (2012) while testing 

sensitivity of parameters in a land surface model. Feasible ranges (minimum and maximum 

values) of soil parameters (BD, Wcrf, Ksat, Exp) are obtained based on average hydraulic 

properties of USDA soil textural classes (Cosby et al., 1984; Rawls et al., 1998; Reynolds et al., 

2000) considering only the dominant soil textures within the basin. Ranges for the rest of the 215 

soil parameters are based on suggestions from the VIC model developers and published 

studies. Feasible ranges of the vegetation parameters are obtained based on the 

recommended ranges provided in the Land Data Assimilation System values for the dominant 

vegetation types in the basin. Our preliminary experiments suggest Canopy height is not 

sensitive hence, Roughness length (RL) and Displacement Heights (Disp), which are computed 220 

from canopy height are not accounted for SA. 
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In addition, the LAI is an important vegetation factor, having substantial control over the 

water balance by directly influencing the ET rates (Gao et al., 2010; Matheussen et al., 2002). 

LAI is specified at a mean monthly basis in VIC. We compared the monthly mean LAI averaged 

over the time period (2000-2015) from MODIS AQUA/TERRA with the LAI values from GLDAS 225 

database for the river basin. We observed that the monthly mean LAI of all the LULC types 

from MODIS captures the phenological characteristics more realistically than the GLDAS LAI 

(Fig 2b) which shall have further implications on water balance. We find the range of MODIS 

LAI obtained for each LULC type are well in agreement with the LAI values obtained in a nearby  

Indian river basin (Patidar and Behera, 2019). 230 

Another important factor linking vegetation characteristics to hydrological processes in VIC is 

the root zone distribution. Typically, root zone allocation in VIC requires user-defined root-

zone depths and fractions for each land cover types that are kept fixed during the calibration 

process. We derived root zone depths and estimated the fractions of roots in each zone 

following (Zeng, 2002) for each vegetation type, and used a simplified approach to vary the 235 

root zone distributions with respect to the soil depths during calibration. This ensures root 

zone properties vary for different model calibration with a reduced number of parameters, 

hence providing a more manageable calibration strategy. For details on our root allocation 

approach, please refer to the Supplement (Sect. S1) 

3.4 Experimental design 240 

3.4.1 Morris Method for Sensitivity Analysis 

SA of the chosen sixteen VIC-3L parameters (Table 1) are conducted using the Morris, (1991) 

method. This method requires Monte Carlo simulations where the model is run with a 

specified number of samples and measures the change in the model output by varying one 

parameter at a time. We used One at a Time Latin Hypercube Sampling (LHS-OAT) strategy, 245 

to form a total number of 1200 model parameter sets. This method proposed two sensitivity 

measures: (1) the mean (µ) of the elementary effects which estimates the direct effect of the 

input parameter on model output (2) the standard deviation (σ) of the Elementary Effects 

which estimates the interaction between the input parameters on the model output. We 

tested the sensitivity of model parameters on the Kling-Gupta efficiency (KGE) metric (Eq. 1-250 

3) (Gupta et al., 2009) computed using observed daily streamflow values over 20 years (1990-

2010) of simulation period. 
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KGE =  1 − √(r − 1)2  +  (𝛼 − 1)2  +  (β − 1)2,   (1) 

        𝛼 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
      (2) 

     β =
µ𝑠𝑖𝑚

µ𝑜𝑏𝑠
      (3) 255 

 

Where r is the linear correlation between observed and simulated discharge, 𝛼 is an estimate 

of flow variability error and β is a bias term. 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 are standard deviations in simulated 

and observed discharge, respectively. µ𝑠𝑖𝑚 and µ𝑜𝑏𝑠 are mean of simulated and observed 

discharge, respectively. 260 

We first visually inspect SA results and assume a screening threshold value for the sensitivity 

index, below which the parameters can be regarded as either completely insensitive or less 

influential. This is a common practice followed in previous SA studies (Gou et al., 2020; 

Sarrazin et al., 2016; Tang et al., 2007; Vanrolleghem et al., 2015). Next, to achieve a more 

objective screening convergence result, we compute the width of the 95% confidence interval 265 

of the sensitivity indices (Herman et al., 2013; Wang and Solomatine, 2019) and then use 

maximum width of the 95% confidence interval, as a statistic (Sarrazin et al., 2016), across the 

lower influential input to verify if the screening convergence has reached. For a detailed 

explanation about the steps we took for the SA experiments, please refer to the Supplement 

(Sect. S2). 270 

 

3.4.2 Model Calibration and Validation 

Next, we calibrate sensitive parameters separately on a subbasin level for the time (1990-

2000) with a 2-year warm up period (1988-1999), using a sequence of Monte-Carlo 

simulation, by generating 5000 near-random parameter sets from within the specified range 275 

using LHSM with uniform distribution. We use KGE (Eq. 1) as the objective function to assess 

the model performance in the calibration period. The KGE metric balances the contribution 

to the error coming from all three main components, namely correlation (e.g., 

timing/dynamics), variability (e.g., seasonality), and systematic bias, and is now a widely used 

metric in hydrometeorological studies (Gupta et al., 2009; Knoben et al., 2019). KGE ranges in 280 

[-∞,1] with larger values indicating better performance. Additionally, we use the PBIAS to 

evaluate our model performance especially to account for the high flow conditions. We adopt 

a common practice of selecting the best model simulations by using a top certain percentage 
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of the total simulations (Chaney et al., 2015; Mockler et al., 2016). This is relevant in our study 

as choosing model simulations based on a particular KGE score is subjective given that the 285 

behavioural performance, as well as the behavioural parameters, vary across the 

subcatchments.  Therefore, we first assess the performance of top 10%, 5% and 2% of model 

simulations at every subbasin and choose the top 2% based on overall model performance 

across the subcatchments, hence not compromising with the performance quality and also 

accounting for equifinality. These behavioural models are further used to simulate 290 

streamflow in the validation period (2001-2010) for all the subcatchments. 

  

3.4.3 LULC scenarios 

All the simulations in the calibration and validation period are performed using a static local 

LULC map of year 2005 derived from NRSC. Simulations using this land use map shall be 295 

termed as NRSC2005 henceforth. Next, we used a set of land use scenarios based on Socio-

economic Pathways (SSPs) and Representative Concentration Pathways (RCPs), from the 

recently released , Land Use Harmonization Project (LUH2) data set (release “LUH2v2h” and 

LUH2v2f) for the time period of (850–2005) and (2015-2100) respectively (Hurtt et al., 2018)  

(See Table S2, Supp. Sect.). The LUH2 approach estimates the gridded land use fractions, 300 

annually at a resolution of 0.25◦.  

The land cover maps from LUH2 are processed and converted to a LULC map of Mahanadi 

basin extent showing a single vegetation coverage at each grid cell of 0.25◦ and further 

converted to VIC grid size of 0.05 deg. The land use classes are reduced to simplify our model 

application, and consequently remapped to the VIC land use classes by assuming all primary 305 

(Forested or Non-forested) and secondary (Forested and Non-forested) land to Deciduous 

Broadleaf Forest (DBF), Managed pasture and Rangeland are considered as Grassland and all 

crops are merged into a single Cropland class. Urban land and water bodies are retained (See 

Table S3, Supp. Sect). It is worth mentioning that the ‘potentially non-forested secondary 

land’ class in the LUH2 datasets matched to the forested areas in NRSC2005 and hence both 310 

mapped into (Deciduous Broadleaf Forest) DBF which is the dominant forest type in the basin 

(Fig S5 in the Supplementary section).  

We used the behavioural models to simulate discharge for the baseline scenario using land 

cover map from LUH2 of year 2005 so as to attain more confidence in the future scenarios. 

We compare LULC maps, NRSC2005 and LUH2005 (Figure 3) and observe spatial patterns of 315 
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the most dominant land-use classes, Cropland (CL) and Forest (F), shows a similar spatial 

distribution and having comparable aerial coverage. The only notable difference in both maps 

is that the Barren ground (BG) class is missing in LUH2005. Table 2 shows the percentage of 

area covered by each land use classes in the basin. Note that we will refer to DBF as Forest (F) 

henceforth.  320 

Among the future scenarios, owing to the large computational demand of our simulations, 

we only considered the ‘worst’ case scenario, RCP3.4 SSP4, which resulted in maximum 

change in the land cover fractional area (Figure 4). Land cover changes and fractional area 

covered in other future scenarios are shown in Fig S6 in supplementary section. Four distinct 

years have been chosen for this study: 2005 (Baseline), 2015 (Present), 2050 (Near Future) 325 

and 2100 (Far Future) to study the impacts of LULC change in the Mahanadi river basin. A 

sharp decrease in the forest cover is observed at the expense of agriculture in the years 2050 

and 2100 (Figure 4). We run the behavioural models three times using the individual LUH 

datasets: (1) with land use map ‘LUH2015’, termed as the ‘present’ (P) scenario (2) with land 

use map ‘LUH2050’, termed as the ‘Near Future’ (NF) scenario (3) and with land use map 330 

‘LUH2100’ which is termed as the ‘Far Future’ (FF) scenario. To account for the extreme 

hydrological effects that these changes could cause, two hypothetical scenarios are framed 

(1) ‘All Cropland’ (CL) scenario where all the grassland and forest areas are transformed into 

cropland (2) ‘All Forest’ (F) scenario where all the cropland and grassland areas are 

transformed into forest. The urban and water bodies in these hypothetical scenarios are 335 

retained as per the baseline scenario. In all the five cases of model simulations, 

meteorological forcing for the time (2001-2010) is held constant i.e., the daily precipitation, 

maximum and minimum temperatures and wind speed are same across all the scenarios. 

Therefore, any changes observed in the hydrological components in these scenarios will be 

only due to the change in land use. The percent areas covered by each land use classes at all 340 

subcatchments across the scenarios are shown in Table 4.  

4. RESULTS  

4.1 Sensitivity Analysis, Model Calibration and Validation 

It is to be noted that SA is conducted for all subbasins individually, hence the Morris screening 

results obtained for each subbasin are independent of each other. However, we observe that 345 

the non-influential parameters match closely with each other across subbasins (Fig S2). Based 
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on the Morris sensitivity measures, there are six sensitive (or influential) parameters namely 

dsmax, d2, binf, v, ws and ds. The rest of the parameters (rmin, d3, wcrf, wpf, rarc, Exp, BD, diff, 

d1, ksat) are either relatively non-influential or having negligible impact in the KGE 

performance. d2 is the most important soil layer probably because it is the thickest soil layer 350 

where most of the roots are found, which is expected to exert strong controls on ET. Dsmax, 

ds and ws are the baseflow related parameters, interlinked with each other, associated with 

the third soil moisture layer d3, having a higher impact on low flows. We discard a common 

set of parameters prior to the model calibration based on weighted average of the sensitivity 

indices of the subbasins. The weights are assigned based on catchment area. Figure 5 shows 355 

the influential and non-influential parameters for the entire basin. The total number of model 

simulations performed are sufficient to achieve the stability of the screening results (See 

Figure S3, Supp. Sect). More details on the Morris screening results are given in the 

Supplement that accompanies this paper (Sect. S2.2).  

Figure 6 shows the performance of VIC with respect to KGE in the calibration and validation 360 

period for all the subcatchments in the highest order of their catchment size. The KGE range 

for the calibration and validation of daily streamflow for all subcatchments are listed in Table 

S4 in Supplementary section.  In overall, evaluation result suggests the model reproduced the 

observed flows remarkably well with the median KGE values of 0.85, 0.86, 0.82, 0.75, 0.63 in 

calibration and 0.77, 0.82, 0.72, 0.60, 0.59 in validation at Basantpur, Kantamal, Kesinga, 365 

Salebhata and Sundergarh, respectively. However, we observe a relative reduction in the daily 

KGE values at the smaller subcatchments (Sundergarh and Salebhata) in both calibration and 

validation period. The PBIAS values obtained in the calibration period (Fig S8, Supp Sect.) 

indicate that the model tends to be more biased (positively) as the catchment size decreases 

and that the largest catchment, Basantpur is least biased. The median PBIAS values at 370 

Sundergarh and Salebhata are +9% and +23% respectively in the calibration period and +19% 

and +55% in the validation period. It is to be noted that subbasins analyzed are human 

intervened and observed streamflow are controlled by minor reservoirs and dams which will 

affect the VIC simulations especially in the smaller subcatchments. Moreover, non-

consideration of groundwater recharge and irrigation in VIC can also possibly affect 375 

performance at smaller subcatchments. Figure S7 (Supp. Sect.) shows that the models 

reproduced the daily and monthly flows consistently when compared to the observed flows 

in both calibration and validation period.  
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Figure 6b shows that the distribution of behavioral parameters within their respective 

variability ranges differs from one parameter to another as well as across subcatchments. The 380 

behavioral models at all subcatchments are scattered nearly across the entire range of 

parameter space for ds and ws, reflecting high effect on modelled streamflow through their 

interaction with other parameters. Contrarily, behavioral parameter ranges of binf, dsmax d2 

and v are relatively constrained across subcatchments, towards either higher, mid, or lower 

values indicating direct influence of these parameters on the behavioral simulations. For 385 

instance, higher values of d2 and v, lower values of dsmax and mid values of binf resulted in 

the behavioral model simulations at the smaller subcatchment, Salebhata. Thickness of 

second soil layer, d2 is the most identifiable parameter across all subcatchments.  

 

4.2 Baseline scenario performance 390 

We compare the performance of calibrated VIC models in the baseline scenario (using 

LUH2005) against the validation performance (using the NRSC2005) for the period 2001-2010.  

The boxplots in Figure 6a shows daily KGE values for the baseline and validation simulations 

for all subcatchments studied here. The median KGE values for the baseline at Ba, Ka, Ke, Su 

and Sa are 0.62, 0.64, 0.58, 0.62 and 0.72 respectively. The model performed better at the 395 

smaller subcatchments, Sa and Su in the baseline whereas decline in the performance is 

observed at subcatchments, Ba, Ka and Ke. PBIAS values (Fig S8, Supp. Sect.) indicates that 

baseline simulations are more biased (negatively) than validation simulations at bigger 

catchments. The median PBIAS values at Ba, Ka and Ke are -28%, -29% and -33% respectively. 

This underestimation can be attributed to the absence of 12% Barren Ground in the baseline 400 

land cover, which is replaced by croplands (4%), forests (5.02%), grasslands (4.57). The 

increase in flows due to the increase in cropland is compensated by the decrease in flows due 

to the increase in forest. Therefore, the underestimation in the simulated flows using 

LUH2005 may result from the increasing grasslands which increased LAI, thus resulting in an 

increase in ET and decrease in surface runoff, respectively. Contrarily, a slight positive bias of 405 

3% is observed at the smallest subcatchment (Sa) in the baseline simulation, compared to 

+55% in the validation simulation. KGE values obtained across calibration, validation and 

baseline period indicates an overall good performance of the basin as per the existing studies 

using KGE as a performance metric (Knoben et al., 2019). In overall, baseline land cover map, 
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LUH show comparable model performance against local land cover map, NRSC, in the 410 

historical period with the model being able to capture the seasonality and Land Use/ Land 

Cover dynamics while simulating the daily flows. 

4.3  LULC impacts and uncertainties 

Figure 7 shows percent change in annual average of extreme flows (i.e., 95th percentile or 

higher) for the time 2001-2010 in scenarios NF, FF, All Cropland (CL) and All Forest (F) with 415 

respect to baseline scenario for the behavioural models. The range of percent change 

represents the related uncertainty in model predictions arising from the behavioural model 

parameters. We observe an insignificant positive change in projected extreme flows in the 

present (P) scenario despite a major increase 6% to 36% in croplands replacing forests across 

four out of five subcatchments (not shown Figure 7). We observe a prominent increase in the 420 

extreme flows at all subcatchments in both future scenarios (NF and FF). The projected 

change in extreme flows in NF ranges between 1.3% and 10.7% across the subcatchments. 

The median percent change in the NF scenarios at subcatchments Ba, Ka, Ke, Su and Sa are 

3.6%, 2.6%, 1.8%, 8.1% and 3.8%, respectively. This increase in extreme flows in NF can be 

attributed to the reduction in forest cover (-20% to -42%) at the expense of cropland (+7% to 425 

+48%) across the subcatchments. Percent increase of slightly higher magnitudes are observed 

in FF scenario in response to further increase in croplands. The projected changes in extreme 

flows in FF ranges between 1.4% and 15.4% across the subcatchments. The median percent 

change in FF scenario at subcatchments Ba, Ka, Ke, Su and Sa are 4%, 2.8%, 2.3%, 11.3% and 

4.1% respectively in response to reduction in forest cover (-19 to -50%) at the expense of 430 

cropland (+19 to +54%) across the subcatchments. As anticipated, maximum percent increase 

in the extreme flows (1.2 to 20.5%) are observed in hypothetical ‘All Cropland’ scenario where 

all forests and grasslands are replaced by cropland and maximum reduction (-2 to -41%) 

observed in ‘All forest’ scenario where all the croplands and grasslands are converted to 

forests. The projected percent changes in mean annual flows are slightly higher than the 435 

extreme flows across all scenarios and subcatchments. The median values in both future and 

CL scenario shows slightly higher positive percent change in the range of 3 to 11% and higher 

negative percent change -5 to -25% in F scenario.  

Maximum increment in extreme flows and annual flows across all scenarios, is recorded at 

the largest subcatchment Basantpur which is in the range of 194 to 496 cumecs and 31 to 35 440 
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cumecs respectively. The maximum reduction of 712 cumecs and 59 cumecs is observed in 

‘All Forest’ scenario at Basantpur. Much lesser change in terms of magnitudes is observed in 

the annual flows compared to the extreme flows. This can be explained by the fact that the 

basin receives approximately 85% of the total annual rainfall during the monsoon months 

(June-Sept). Therefore, with negligible changes occurring during rest of the year, changes in 445 

extreme flows occurring only during the monsoon months are masked out when computed 

for the entire year. We further computed the difference between maximum and minimum 

values (ranges) of projected extreme flows as a measure of the amount of uncertainty 

contained in ensemble predictions made using land cover scenarios and multiple 

(behavioural) parameter sets (Table 4). Among all the scenarios, maximum uncertainty is 450 

observed in the hypothetical ‘All Forest’ scenario followed by ‘All Cropland’ scenario. In 

overall the uncertainty of hydrological model parameterization is observed at the largest 

subcatchment Basantpur and decrease with respect to the decrease in the catchment size. 

We analysed the water balance components to understand the factors causing changes in the 

streamflow. We notice that the model is able to estimate all the water budget components 455 

and maintain proper closure of the water balance in all the scenarios across the 

subcatchments. In overall, we found that the increase in the mean annual flows is caused due 

to the increment in runoff and reduction in ET across all subcatchments. Positive median 

changes are observed in runoff in scenarios (NF, FF and CL) ranging between (2.8 to 14) % and 

negative changes of (-4 to -37) % in F scenario. Negative median changes are observed in ET 460 

in scenarios (NF, FF and CL) ranging between (-1.4 to -3.4) % and positive changes of (1.9 to 

7.8) % in F scenario. Removal of forests at the expense of cropland decreases the LAI of the 

natural vegetation and hence decreases ET. Moreover, the removal of forest cover reduces 

the root water uptake by plants which increases the water content of the second and third 

layer of the soil. The top thin soil layer in VIC model helps in partitioning the rainfall amount 465 

into direct runoff and the amount entering the soil. Therefore, the increase in the cropland 

results in more direct runoff thus reducing the soil moisture content in the first soil layer. The 

increase in runoff is not significant, despite the occurrence of major deforestation in the 

future scenarios. This is because the decrease in ET due to forests removal is compensated as 

increment in croplands also leads to a major increase in ET rates, which is why we do not see 470 

a sharp reduction in the ET rates. Negligible changes are observed in baseflow while slight 

increase in total soil moisture is noticed across the subcatchments (Not shown). The water 
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balance indicates that 15 to 21% of precipitation is direct runoff and 64 to 80% is ET across all 

subbasins and all land cover scenarios whereas negligible baseflow and soil moisture change 

are observed. This is probably because the third soil moisture layer in the model does not 475 

reach saturation to cause the non-linear baseflow, as precipitation in the basin is highly 

concentrated in only three to four months in monsoon and rest of the year remains dry. 4.3. 

5.  Discussions 

Performing a comprehensive sensitivity analysis and model calibration enhances the accuracy 

for predicting hydrological responses, which subsequently improves the representations of 480 

changes in the hydrological regime due to land cover changes. Our SA results are in agreement 

with existing studies conducted on several basins using VIC which show binf and d2 are the 

most sensitive parameters (Demaria et al., 2007; Gou et al., 2020; Lilhare et al., 2020; Yeste 

et al., 2020). Moreover, not all the parameters recommended for calibration by VIC model 

developers (binf, d1, d2, d3, ds, dsmax and ws) are sensitive to this basin which is also in line 485 

with Findings of Bao et al., (2011), Demaria et al., (2013) and Gou et al., (2020) for other 

basins. For, instance, first- and third-layer soil depth (d1 and d3) are not found sensitive in 

this study. d1 is the thinner topmost soil layer having not much control on ET and subsurface 

processes. d3 is probably not sensitive as most of the roots are present in the second soil 

layer, hence not contributing to the soil moisture uptake through the roots. We found that 490 

soil properties impose greater control on model performance than the vegetation 

parameters. However, while varying soil depths influences the ET rates by posing indirect 

influences on both timing and magnitude of the soil water available for ET, varying root 

depths and fractions (using our root zone allocation approach) has provided substantial 

control over the water balance by directly influencing the ET rates, thereby improving KGE 495 

(not shown). The weakness in reproducing flows at smaller subcatchments in Mahanadi basin 

are also reported previously in some studies (Kneis et al., 2014; Mishra et al., 2008; Nayak, 

Venkatesh, Thomas, & Rao, 2010). 

LUH2 is a new dataset, not yet extensively used in basin-scale hydrology. A recent study by 

Krause et al., (2019) predicted worldwide increment in runoff (67%) and a variable response 500 

of ET across different land use scenarios using LUH2 dataset. The major changes occurring in 

Mahanadi in the future scenarios as predicted by LUH2 agrees with a recent study by Behera 
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et al., (2018) in the same basin, wherein they found a prominent conversion of DBF to 

croplands in year 2025 relative to year 2005.  

Our findings indicate increase of 27-496 cumecs in extreme flows and 2.6-35 cumecs  in 505 

annual mean flows due to deforestation, across the subbasins and scenarios (including the 

hypothetical cropland scenario). These increasing trends are consistent with other studies in 

the Mahanadi river basin in India (Dadhwal et al., 2010), neighbouring basins (Das et al., 2018; 

Kundu et al., 2017) and elsewhere (Abe et al., 2018; Berihun et al., 2019; Cornelissen et al., 

2013; Costa et al., 2003). Kundu et al., (2017) found an increase in runoff and decrease in ET 510 

due to the expansion in projected agricultural land in Narmada river basin in India. Das et al., 

(2018) predicted that deforestation, urbanization and cropland expansion in eastern river 

basins of India, in the future would increase runoff and baseflow and decrease ET%. We found 

a small change in mean annual discharge as well as in water balance components despite a 

major change in land cover. This correlates with research (Ashagrie et al., 2006; Fohrer et al., 515 

2001; Hurkmans et al., 2009; Kumar et al., 2018; Patidar and Behera, 2019; Rogger et al., 2016; 

Viglione et al., 2016; Wagner et al., 2013; Wilk and Hughes, 2002) wherein they have reported 

that the impacts of land cover change on water balance components in a large-scale river 

basin are too small to be detected due to the compensation effects. Wilk and Hughes, (2002) 

showed that removal of large forests led to little or no changes in annual runoff in large 520 

heterogeneous catchments in South India. Patidar and Behera, (2019) in a recent study in a 

large river basin in India, reported that the conversion of forest to agriculture may not alter 

the water balance significantly as the impacts on ET and runoff cancels out at the basin scale. 

The range of these hydrological estimates (Figures 7, 8 and Table 4) provides more 

straightforward and explicit quantification of uncertainty than other statistical measures such 525 

as variance, interquartile ranges (Her et al., 2019). Our results suggest that even a small set 

of calibrated models can predict a wide range of flows through different hydrological 

processes occurring within the basin and therefore the impacts of uncertainty derived from 

model parameters on the relative changes cannot be neglected. The uncertainty due to model 

parameters did not alter the trend of changes in extreme flow, mean annual flow and 530 

hydrological components due to land use change in comparison to the baseline simulations. 

However, a considerable variation is observed especially in the magnitudes of extreme flows 

simulated for the different land cover scenarios. For instance, the competing interactions 

among Ds and Ws, lead to the varying hydrological processes occuring within the basin, 
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thereby affecting the partition of water in the soil column. Similar conclusions are outlined in 535 

Chen et al., (2019) that the projected monthly and annual flows simulated for different land 

use scenarios were having significant uncertainty due to model parameterization. In addition, 

we found that the trends within the scenarios especially in the mean annual flows, runoff and 

ET are not consistent. For instance, we expect the increase in flows to be more in Far Future 

scenarios than Near Future, given that the increase in agricultural land in the Far Future is 540 

relatively more. However due to different parametrization, some models predicted decrease 

in Far Future flows relative to Near Future (Fig 7). This clearly indicates that the impact of land 

use could be biased when a single model prediction is used, as the impacts could be 

potentially hidden within simulation uncertainty derived from model parameters (Chen et al., 

2019). Only a small percentage of model simulations (2%; 100 model simulations) with 545 

relatively high daily KGE scores (KGE> 0.8 at 3 out of 5 subcatchments) were used for assessing 

the impacts, yet significant variations in extreme flow magnitudes and trends (in some cases) 

are observed. Therefore, selecting models with relatively lower KGE values might have led to 

larger uncertainty bound and inconsistent trends in the relative change. Equifinality in 

hydrological modelling and its influence on hydrological analysis of climate change has been 550 

discussed in several studies. However, its influence on hydrological analysis of land cover 

change has not been studied enough to provide a clear idea about the contributions of model 

parameter uncertainty to hydrological projections. Our results thus underline the importance 

of considering model uncertainty and consequently equifinality while modelling the 

landcover change impacts.  555 

 

5. Conclusions 

In this study an attempt is made to quantify the hydrologic response of the subcatchments of 

Mahanadi River basin owing to different land cover scenarios obtained from LUH, through the 

implementation of a sensitivity based calibrated semi-distributed hydrological model.  Our 560 

findings are insights to the plausible hydrological scenarios in future at a river basin level 

which is a crucial step forward for a developing country in the context of today's increasing 

focus on integrated water resources management (IWRM) in River basins. In overall, VIC 

captured the observed daily flows well in calibration, validation and baseline period across 

subcatchments. Deforestation at the expense of cropland dominated the land cover change 565 
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processes across all scenarios and subcatchments, which has led to an increase in the extreme 

flows and mean annual flows. Analysis of other hydrological components have shown that 

the increase in flows is caused by the increase in runoff and decrease in ET. The uncertainties 

due to model parameterization in land use change impacts, varies from one subcatchment to 

another. The uncertainties did not alter the trend of changes when compared to the baseline; 570 

however, a considerable variation is observed especially in the magnitudes of extreme flows 

simulated for the different land cover scenarios. This result suggests a significant constraint 

on the usage of hydrological models for the variations of extreme flows due to land use 

change, even with high KGEs at daily time step as the impacts could be potentially hidden 

within simulation uncertainty derived from the model parameters. The uncertainties from 575 

model parameters thus should be considered in land use change impact assessment for more 

robust and reliable analysis, which shall make the land cover change mitigation strategies and 

water resources management plans more effective. 

This study indicates that the recurrent flood events occurring in the Mahanadi River basin 

might be influenced by the changes in LULC at the catchment scale. It is worth mentioning 580 

that existing studies (Asokan and Dutta, 2008; Ghosh et al., (2010) had predicted an increase 

in the extreme flows during the monsoon which if combined with the impacts resulting from 

land cover changes might result in adverse flooding in the basin. Therefore, Future studies 

shall focus on modelling the combined impacts of climate and land cover changes on 

hydrology of Mahanadi River basin, considering the uncertainties from model 585 

parameterization, which is currently lacking in many studies. 
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Table 1: VIC and routing model parameters tested for sensitivity analysis and feasible 

ranges. 

 * Wpf is analyzed based on its multiplier (i.e., the M term in Wpf parameter’s equation). Although description and units refer to actual 
parameter in VIC, parameter range represent the multiplier values (instead of actual parameter). 865 
Parameter names in bold are sampled on log domain. “a” indicates parameters that are suggested by VIC model developers as the most 
sensitive parameters (Gao et al., 2010). “b” indicates parameters suggested in the literatures to be tested for sensitivity (Demaria et al., 
2007; Gou et al., 2020; Joseph et al., 2018; Yanto et al., 2017). 

 

 870 

Parameters Description Units Minimum Maximum 

Soil parameters 

Wcrf Fraction of water content at critical pointb - 0.40 0.60 

Wpf *(Wpf = M* Wcrf) Fraction of water content at wilting pointb - 0.50 0.99 

BD 
Bulk density of soil (used in VIC estimation of 

porosity) b 
Kg/m3 1350 1550 

Ksat Saturated hydraulic conductivity b mm/day 240 840 

Exp 

Parameter characterizing the variation of 
saturated hydraulic conductivity with soil 

moisture b 
 

- 10 30 

d1 Thickness of first soil layer a m 0.01 0.3 

d2  Thickness of second soil layer a m 0.31 3.5 

d3  Thickness of third soil layer a m 0.31 3.5 

dsmax  Max. velocity of baseflow a mm/day 10-4 101.48 

ds  Fraction of max. velocity of baseflow a - 10-4 100 

binf  
Parameter to describe the Variable 

Infiltration Curve a 
- 10-4 100.6 

ws 
Fraction of maximum soil moisture of the 

third layer a 
 
- 

 
10-4 100 

Vegetation parameters 

rarc Architectural Resistanceb (sm-1) 20 70 

rmin Minimum stomatal resistanceb (sm-1) 100 170 

routing 

v Flow velocityb m/s 0.1 3 

diff Flow diffusivityb m2/s 500 5000 
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Table 2. Percent of each Land use type in NRSC2005 and LUH2005 in the entire Mahanadi 

river basin (WB – Water Body; ENF – Evergreen Needleleaf Forest; DBF – deciduous Broadleaf 

Forest; GL- Grassland; CL- Cropland; U – Urban) 

 875 

 

 

 

 

 880 

 

 

 

Table 3: Land cover area change across all subcatchments of Mahanadi river basin  

LULC classes (%)         NRSC2005 
 

LUH2005 
 

WB  2.6 0.76 

ENF  0.08 0 

DBF  35.98 41 

GL  0.13 4.7 

CL  49 53 

U  0.52 0.4 

BG  12.3 0 

LULC 
classes 

(%) 

 
Baseline 
2005 

 

Present 
2015 

Near Future 
2050 

Far Future 
2100 

All 
Cropland 

All 
Forest 

All 
Grassland 

Basantpur 

CL  40 54 69 78 

94 94 94 
F  54 41 23 16 

GL  0 4.4 6.3 4.3 
w 4.5 0.5 0.5 0.5 
U  0.5 0.6 1.2 1 

Kantamal 

CL  51 44 58 70 

95 95 95 
F  44 51 33 25 

GL  0 5.3 7.6 5 
w 5.4 0 0 0 
U  0 0 0 0.8 

Kesinga 

CL  44 50 62 73 

94 94 94 
F  50 45 30 22 

GL  0 5 7 5 
w 5.4 0.1 0.1 0 
U  0 0 0.8 0.6 

Salebhata 

CL  29 67 77 83 

79 79 79 
F  50 29 17 15 

GL  0 3.5 4.3 2 
w 5 0 0 0 
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 885 

Table 4 Ranges of percent change, change in flows, and uncertainty (i.e., difference between 

max. and min. predicted flow) in extreme and mean annual flows in all the scenarios with 

respect to the baseline scenario. 

U  0 0 0.7 0.5 

Sundergarh 

CL  34 61 73 83 

95 95 95 
F  61 34 19 11 

GL  0 0.5 7.1 5 
w 3.5 0 0 0 
U  0 0 0.5 0.5 

Mean annual extreme Ba Ka Ke Su Sa 

       Near future    

Change (%) 2.3 to 5.5 1.4 to 4.7 1.3 to 2.7 4.7 to 10.7 2.7to 4.3 
change (cumecs) 132 to 289 62 to 166 42 to 77 32 to 75 27 to 41 

Uncertainty(cumecs) 157           104 36 41 14 

                                                                                           Far future 

Change (%)      2.4 to 6.5 1.4 to 5.6 1.6 to 3.5 6 to 15.4 3 to 4.7 

change (cumecs) 137 to 347 63 to 195 51 to 100 42 to 109 28 to 45 

Uncertainty(cumecs) 210 132 49 67 17 

                                                                                           Cropland 

Change (%) 2.4 to 1.2 1.2 to 8.6 2.1 to 5.7 6.5 to 20.5 5 to 8.5 

change (cumecs) 124 to 496 51 to 301 67 to 164 45 to 147 49 to 81 

Uncertainty(cumecs) 372 250 97 102 32 

                                                                                              Forest 

Change (%) -4 to -14.4 -2 to -11.4 -2.6 to -6.6 -15.8 to -41 -13.5 to -22 

change (cumecs) -218 to -712 -85 to -400 -86 to -190 -109 to -289 -131 to -213 

Uncertainty(cumecs) 494  315 104 180 82 

      

Mean annual flows Ba Ka Ke Sa Su 

     Near future    

Change (%) 3.7 to 7.6 2.5 to 6.13 2.4 to 4.2 4.9 to 9.7 3.4 to 4.6 

change (cumecs) 21 to 31 8.6 to 16 5.2 to 7.5 34 to 61 2.6 to 3.3 

Uncertainty(cumecs) 10 7.4 2.3 27 0.7 

      

                                                                                           Far future 

Change (%)       3.4 to 7.9 2.12 to 6.5 3.4 to 4.6 6 to 13.2 3.24 to 4.6 

 change (cumecs) 19 to 32.6 7.3 to 16.8 5 to 8.8 4 to 8.3 2.4 to 3.3 

Uncertainty(cumecs) 13.6 9.5 3.8 4.3 0.9 

      

                                                                                           Cropland 

Change (%) 2.8 to 8.5 1 to 7.7 2.1 to 5.6 6 to 16 4.1 to 6.6 
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Figure 1: The Mahanadi river basin boundary and its subcatchments Basantpur, Kantamal, 900 

Kesinga, Sundergarh and Salebhata (indicated with Ba, Ka, Ke, Su, Sa respectively). 
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 910 

 

 

Figure 2: (a) LULC map of Mahanadi River basin from NRSC of year 2005 (b) Comparison of 
LAI values from MODIS, averaged over the time period, 2000-2015 and GLDAS. 

change (cumecs) 15.6 to 35 3.4 to 20 4.7 to 12 4.2 to 10 3.1 to 5 

Uncertainty(cumecs) 19.4 16.6 7.3 5.8 2 

      

                                                                                             Forest 

Change (%) -4.6 to -14.34 -2.4 to -11.1 -2.9 to -7.2 -14.5 to -34.2 -12 to -18.6 

change (cumecs) -26.2 to -59 -8.2 to -29 -6.4 to -15.8 -10.2 to -21.3 -9.1 to -13.3 

Uncertainty(cumecs) 33 20.8 9.4 11 4.2 

      

(a) 

(b) 
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 930 

Figure 3. Comparison of spatial patterns of land cover types from NRSC and LUH for the 
baseline year, 2005. All land cover classes shown here are resampled to the model grid 
resolution of 5km. The color bar represents the fraction of area covered by each land cover 
type. 
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Figure 4: Top: Fraction of catchment area occupied by Land use classes for scenario RCP3.4 

SSP4 Bottom: land cover scenarios from LUH (resolution- 25 km) for years 2015, 2050 and 

2100 used in this study. LUH land cover classes shown here are resampled to the model grid 950 

resolution and only the predominant class is shown here for clarity. For actual model 

simulations VIC accounts for the individual proportion for each land cover type at each grid 

point. 
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Figure 5: Sensitivity indices (Mean and Standard deviation) of Morris Method for VIC-3L 965 

parameters for Mahanadi river basin. Parameters listed on the right side are from highest 

ranking (dsmax) to lowest ranking (ksat) order. Black dashed vertical line is the screening 

threshold. Parameters screened out are lying within the red dashed box. 
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Figure 6: (a) Box plot showing KGE range for calibrated, validated and baseline scenario 

simulations. 
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Figure 6: (b) Parallel coordinate plot representing VIC-3L behavioural parameterization for all 

subcatchments obtained during model calibration. Lines in red are simulations where KGE lies 

within top 2% i.e., behavioural simulations and lines in grey are non- behavioural simulations. 

Behavioural KGE at Ba, Ka, Ke, Su and Sa ranges from 0.83 to 0.88, 0.85-0.88; 0.81-0.84; 0.74-

0.76 and 0.62 to 0.66 respectively. Parameters are defined in Tables 1. 995 
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Figure 7: (a) (left) Percent change in extreme flows (i.e., 95th percentile or higher) (right) 

Change in extreme flows in cumecs (b) (left) Percent change in mean flows (right) Change in 1025 

mean flows in cumecs, averaged annually over the time (2001-2010) in the Near future (NF), 

Far future (FF), Cropland (CL) and Forest (F) scenarios with respect to baseline scenario for all 

the subcatchments. Please note that the climate forcing is kept fixed for the period 

corresponding to year (2001-2010) The results are shown for the behavioural model 

simulations obtained through calibration. 1030 
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Figure 8: Percent change in (left) mean runoff (right) mean ET averaged annually over the 

time (2001-2010) in the Near future (NF), Far future (FF), Cropland (CL), Forest (F) scenarios 1045 

with respect to baseline scenario for all the subcatchments. Please note that the climate 

forcing is kept fixed for the period corresponding to year (2001-2010). The results are shown 

for the behavioural model simulations obtained through calibration. 
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